
@SubSection{Lists}

 If e1,...,en all have type ty then the ML expression '[e1;...;en]'
 has type 'ty list'. The standard functions on lists are 'hd' (head),
 'tl' (tail), 'null' (which tests whether a list is empty - i.e.
 is equal to '[]' (nil)), and the infixed operators '::' (cons)
 and '!@' (append, or concatenation).

 @Verbatim{

 - let m = [1;2;(2+1);4];
 > m = [1;2;3;4] : int list

 - hd m, tl m;
 (1,[2;3;4]) : int # (int list)

 - null m, null [];
 (false,true) : bool # bool

 - 0::m;
 [0;1;2;3;4] : int list

 - [1;2] !@ [3;4;5;6];
 [1;2;3;4;5;6] : int list

 - [1;true;2];
 Type Clash in: [1;true;2]
 Looking for: int
 I have found: bool

 }

 All the members of a list must have the same type (although
 this type could be a sum, or disjoint union, type - see 2.4).

 @SubSection{Tokens}

 A sequence of characters in token quotes (`) is a token.

 @Verbatim{

 - `this is a token`;
 `this is a token` : tok

 - "this is a token list";
 "this is a token list" : tok list

 - it = ("this is a" !@ [`token`;`list`]);
 true : bool

 }

 The expression "tok1 tok2 ... tokn" is an alternative syntax
 for [`tok1`; `tok2`; ... ;`tokn`].

 @SubSection{Polymorphism}

 The list processing functions 'hd', 'tl' etc can be used on all
 types of lists.

 @Verbatim{

 - hd [1;2;3];
 1 : int

 - hd [true;false;true];

 true : bool

 - hd "this is a token list";
 `this` : tok

 }

 Thus 'hd' has more than one type,
 for example above it is used with types '(int list) -> int',
 '(bool list) -> bool' and '(tok list) -> tok'.
 In fact if ty is @Italic{any} type then 'hd' has the type '(ty list) -> ty'.
 Functions, like 'hd', with
 many types are called @Italic{polymorphic},
 and ML uses
 type variables '@*{}a', '@*{}b', '@*{}1', '@*{}2', '@*{}', '@*{}@*{}',
'@*{}@*{}@*{}' etc
 to represent their types.

 @Verbatim{

 - hd;
 \ : (@*{}a list) -> @*{}a

 - let rec map f l =
 = if null l then []
 = else f(hd l)::map f (tl l);
 > map = \ : (@*{}a -> @*{}b) -> ((@*{}a list) -> (@*{}b list))

 - map fact [1;2;3;4];
 [1; 2; 6; 24] : int list

 }

 map takes a function f (with argument type @*{}a and result type @*{}b),
 and a list l (of elements of type @*{}a), and returns the list obtained
 by applying f to each element of l (which is a list of elements
 of type @*{}b). map can be used at any instance of its type:
 above, both @*{}a and @*{}b were
 instantiated to int; below, @*{}a is instantiated to (int list) and @*{}b
 to bool. Notice that the instance need not be specified;
 it is determined by the typechecker.

 @Verbatim{

 - map null [[1;2]; []; [3]; []];
 [false; true; false; true] : bool list

 }

 @SubSection{Lambda-expressions}

 The expression '\x.e' evaluates to a function with
 formal parameter x and body e. Thus 'let f x = e' is equivalent
 to 'let f = \x.e'. Similarly 'let f(x,y)z = e' is equivalent
 to 'let f = \(x,y).\z.e'.
 Repeated '\'`s, as in '\(x,y).\z.e', may be abbreviated by
 '\(x,y)z.e'.
 The character '\' is our representation of
 lambda, and expressions like '\x.e' and '\(x,y)z.e' are
 called lambda-expressions.

 @Verbatim{

 - \x.x+1;
 \ : int -> int

 - it 3;
 4 : int

 - map (\x.x@*{}x) [1;2;3;4];
 [1;4;9;16] : int list

 - let doubleup = map (\x.x!@x);
 > doubleup = \ : ((@*{}a list) list) -> ((@*{}a list) list)

 - doubleup ["a b";"c"];
 ["a b a b";"c c"] : (tok list) list

 - doubleup [[1;2];[3;4;5]];
 [[1;2;1;2];[3;4;5;3;4;5]] : (int list) list

 }

 @SubSection{Failure}

 Some standard functions @Italic{fail} at run-time on certain arguments,
 yielding a token (which is usually the function name) to identify
 the sort of failure. A failure with token `t` may also be generated
 explicitly by evaluating the expression 'failwith `t`' (or
 more generally 'failwith e' where e has type tok).

 @Verbatim{

 - hd(tl[2]);
 Failure: hd

 - 1/0;
 Failure: /

 - (1/0)+1000;
 Failure: /

 - failwith (hd "this is a token list");
 Failure: this

 }

 A failure can be trapped by '?'. The value of the expression
 'e1?e2' is that of e1, unless e1 causes a failure, in which case it is
 the value of e2.

 @Verbatim{

 - hd(tl[2]) ? 0;
 0 : int

 - (1/0)?1000;
 1000 : int

 - let half n =
 = if n=0 then failwith `zero`
 = else let m=n/2
 = in if n=2@*{}m then m else failwith`odd`;
 > half = \ : int -> int

 }

 The function half only succeeds on non-zero even numbers; on
 0 it fails with `zero`, and on odd numbers it fails with `odd`.

 @Verbatim{

 - half 4;
 2 : int

 - half 0;
 Failure: zero

 - half 3;
 Failure: odd

 - half 3 ? 1000;
 1000 : int

 }

 Failures may be trapped selectively (on token) by '??'; if e1 fails
 with token '`t`', then the value of 'e1 ??"t1 ... tn" e2' is
 the value of e2 if t is one of t1,...,tn, otherwise the expression
 still fails with '`t`'.

 @Verbatim{

 - half 0 ?? "zero plonk" 1000;
 1000 : int

 - half 1 ?? "zero plonk" 1000;
 Failure: odd

 }

 One may add several '??' traps to an expression, and one may add
 a '?' trap at the end as a catchall.

 @Verbatim{

 - half 1
 = ?? "zero" 1000
 = ?? "odd" 2000;
 2000 : int

 - hd(tl[half(4)])
 = ?? "zero" 1000
 = ?? "odd" 2000
 = ? 3000;
 3000 : int

 }

